If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y+47=0
a = 1; b = 14; c = +47;
Δ = b2-4ac
Δ = 142-4·1·47
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{2}}{2*1}=\frac{-14-2\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{2}}{2*1}=\frac{-14+2\sqrt{2}}{2} $
| C=8s+3/2s+12 | | (7m-3)(7m+2)=0 | | 12x-3=-9 | | 5=1+7k+4 | | y/6=7.5 | | X^2+80=24-9x | | 24=4(b+3) | | 12x•3=-9 | | 3(2+x)=10-4x | | 58=50+4n-10 | | X+8+2x=17 | | 3(2+x)=14-4x | | X^2+x-1722=0 | | 6x-20=x-10 | | 3c+10=31 | | X-10=6x-20 | | 6x-10+x-10=180 | | 4y=193/27 | | 2y+(8y-3)=0 | | 2(4+x)=15-6x | | 646,449/68.3=e | | 18x-18=32x-88 | | s-15=15.31 | | 4m=8m-5 | | X+0.27x=180 | | 2(1+x)=14-5x | | 3/4x+6=2/3x-8 | | 3-7x+1=10 | | 800=2x=60 | | 3x/2+1/4(x-20=10 | | 3b/4-2/3=2/6+5b/2 | | 2y+(8y-3)=1 |